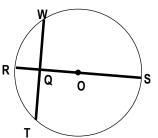
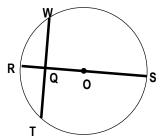

Geome Name	etry Regents Lomac 2015-2016	Date <u>5/16</u> due <u>5/17</u> Per	Circles: Chords and Diameters	10.7R
LO:	I can solve problems involving di	ameters and chords.		
	NOW On the back of this pack	et		
<u> </u>	Circles: chord and diameter re	lationship		
	Use the website link for 10.7 (see below or use the QR code between chord midpoints and diameters.		ght) to investigate the relationship	

http://tube.geogebra.org/m/sTestGMm?doneurl=%2Fsearch%2Fperform%2Fsearch%2Fchord%2Bdia meter

1

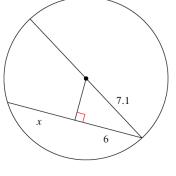

 \Box (a) Construct the perpendicular bisector of \overline{WT} and label the intersections with the circle R and S. Label the intersection of \overline{WT} and \overline{RS} with a Q.

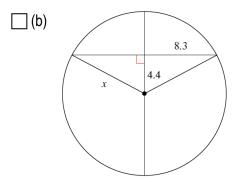


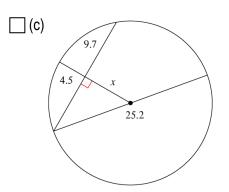
chord.

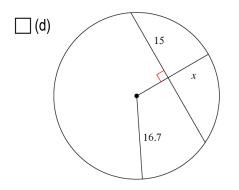
 \Box (b) \overline{RS} is a ______ of circle O. The perpendicular bisector of ANY chord in a circle is a ______of the circle. (c) If we know that a diameter bisects a chord, then it must also be ______ to the chord. If we know that a diameter is perpendicular to a chord, then it must also ______ the

(1) (d) Prove the **CHORD DIAMETER THEOREM** which are your statements in part C. Mark each diagram provided as you write/assemble your proof.

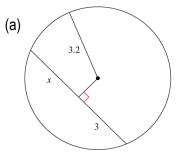


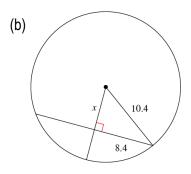


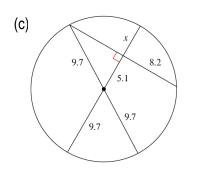

	ects a chord (\overline{WT}), then the pendicular to the chord	If a diameter (\overline{RS}) is perpendicular to a chord (\overline{WT}), then the diameter bisects the chord		
I know that	because	I know that	because	
diameter \overline{RS} bisects a chord \overline{WT}		diameter \overline{RS} is perpendicular to a chord \overline{WT}		
$\overline{WQ} \cong \overline{TQ}$		\angle WQO \cong \angle OQT and both are 90°		
$\overline{OQ} \cong \overline{OQ}$		$\overline{OQ} \cong \overline{OQ}$		
Auxiliary segments		Auxiliary segments		
$\overline{OW} \cong \overline{OT}$		$\overline{OW} \cong \overline{OT}$		
∆WOQ ≅ ∆TOQ		∆WOQ ≅ ∆TOQ		
$\angle WQO \cong \angle OQT$ and both are 90°		$\overline{WQ}\cong\overline{TQ}$		
$\overline{WT} \perp \overline{RS}$		diameter \overline{RS} bisects chord \overline{WT}		

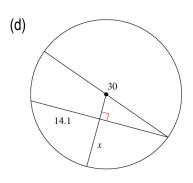

(e) In your proof, you added radii to your diagram and formed 2 triangles. What kind of triangles were formed?_____ What formula can you use to find unknown side lengths of _____ triangles?_____

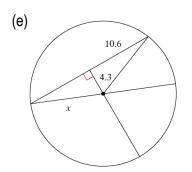
(2) Find x in each diagram. Adding a radius or other segment to the diagram may be helpful.

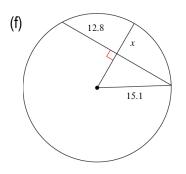

(3) Exit Ticket


ON THE LAST PAGE



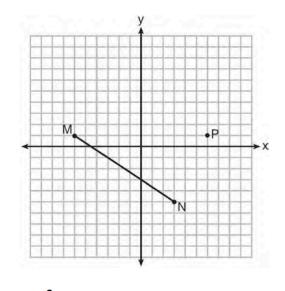

Homework


(1) Find the measure of x.



5 **10.7R**

(4) calculator

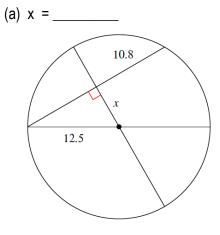

(2) Review:

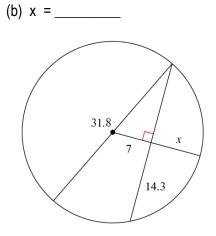
Homework

64 A shipping container is in the shape of a right rectangular prism with a length of 12 feet, a width of 8.5 feet, and a height of 4 feet. The container is completely filled with contents that weigh, on average, 0.25 pound per cubic foot. What is the weight, in pounds, of the contents in the container?

- 1 1,632
- 2 408
- 3 102
- 4 92

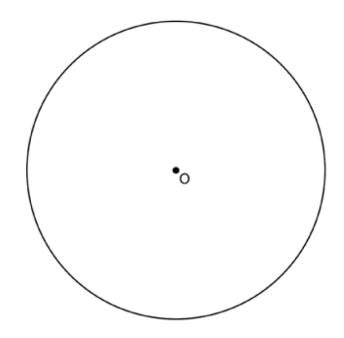
10 Given \overline{MN} shown below, with M(-6, 1) and N(3, -5), what is an equation of the line that passes through point P(6, 1) and is parallel to \overline{MN} ?




1
$$y = -\frac{2}{3}x + 5$$

2 $y = -\frac{2}{3}x - 3$
3 $y = \frac{3}{2}x + 7$
4 $y = \frac{3}{2}x - 8$

Exit Ticket	Name	Date Per	10.7R
-------------	------	----------	-------


The LO (Learning Outcomes) are written below your name on the front of this packet. Demonstrate your achievement of these outcomes by doing the following:

(1) Find the indicated measure for each diagram. Show sufficient evidence of your solution

8 DO NOW	Name	Date Per	10.7R
(1)	5	Using a straightedge and compass, construct a	
		square inscribed in circle O below. [Leave all	
		construction marks.]	

Determine the measure of the arc intercepted by two adjacent sides of the constructed square. Explain your reasoning.